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Abstract A defect in cerebral energy production due to
dysfunction of the mitochondrial electron transport system
(ETS) has been postulated to be important in the pathogen-
esis of Parkinson Disease (PD). However, direct in vivo
measurements of cerebral mitochondrial function are scant
and inconsistent. We directly investigated cerebral mito-
chondrial function in vivo with positron emission tomog-
raphy (PET) in 12 patients with early, never-medicated PD
and 12 age-matched normal controls by combined measure-
ments of the cerebral metabolic rate of oxygen (CMRO2)
and the cerebral metabolic rate of glucose (CMRglc).
Instead of the decrease in CMRO2 and CMRO2/CMRglc
molar ratio characteristic of defects in mitochondrial
oxidative metabolism, there was a statistically significant
24% general increase in CMRO2 and no change in
CMRO2/CMRglc. Since PD symptoms were already
manifest, reduced oxidative activity of the mitochondrial
ETS cannot be a primary mechanism of neuronal death in
early PD. This increase in metabolism could reflect the
increased energy requirements of an injured brain or an
uncoupling of ATP production from oxidation in the
terminal stage of oxidative phosphorylation. Which is the
case in early PD and whether these metabolic abnormalities
are important in the pathogenesis of PD will require further
study.

Keywords Parkinson Disease . Cerebral oxygen
metabolism . Cerebral glucose metabolism .Mitochondria

Introduction

Dysfunction of mitochondrial oxidative metabolism has
been implicated in the pathogenesis of Parkinson Disease
(PD) (Abou-Sleiman et al. 2006). Diminished activity in
complex I of the mitochondrial electron transport system
(ETS) in post-mortem brain tissue has been reported in
cortex and substantia nigra (Schapira 1994; Keeney et al.
2006). However, in vivo evidence of cerebral mitochondrial
electron transport dysfunction is scant and inconsistent. Low
ATP levels have been reported in the cortex in two studies
(Piert et al. 1996; Rango et al. 2006). Overall cerebral
oxygen metabolism has been reported to be not different
from normal, but with relative increases in the basal ganglia
opposite to the most symptomatic side (Wolfson et al. 1985;
Leenders et al. 1985). These in vivo studies were performed
in patients with mean disease duration of 6–7 years that was
treated with L-dopa. If a defect in mitochondrial electron
transport is important in the pathogenesis of PD, it will be
present early in the course of the disease and prior to the
possibly confounding effects of drug therapy.

Specific defects in mitochondrial ETS decrease CMRO2

proportionately more than CMRglc (fewer moles of oxygen
consumed per mole of glucose metabolized), thereby
producing a reduction in the CMRO2/CMRglc molar ratio
below the normal value of 5.6 (Brierley et al. 1977;
Frackowiak et al. 1988). Therefore, in vivo assessment of
mitochondrial energy metabolism requires combined mea-
surement of CMRO2 and CMRglc, which had not previ-
ously performed in Parkinson Disease.

PET studies of early PD at Washington University

We directly measured CMRO2 and CMRglc in vivo with
positron emission tomography (PET) in 12 early, never-
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medicated participants with PD and compared to 12 age-
matched normal controls. All participants also underwent
magnetic resonance scanning to permit correction of the
PET data for brain atrophy and to permit accurate
localization of substantia nigra, putamen and globus
pallidus for regional measurements (Powers et al. 2008).

The 12 participants (6 men/6 women) with PD were 44–
77 years old (mean 60). Symptoms had been present for 8–
48 months (mean 22). Hoehn and Yahr stages were: 2 Stage
1, 1 Stage 1.5, and 9 Stage 2 ( Hoehn and Yahr 1967).
Twelve normal control subjects from a cohort of 23 were
matched by age to the 12 participants with PD without
reference to any PET data. Their ages were 45–71 (mean
61) years. There were 6 men and 6 women.

There was a statistically significant 24% increase in
hemispheric CMRO2 in PD (p=.037) (Table 1). This
change was in the opposite direction of the decrease that
occurs with defects in mitochondrial electron transport.
Hemispheric CMRglc also was increased by 15% and
CMRO2/CMRglc was increased by 10%. Both of these
changes are also in the opposite direction that occurs with
defects in mitochondrial electron transport. Examination of
the confidence intervals for the differences between the two
groups for these latter two measurements demonstrates that
there is less than a 6% chance that CMRglc is lower in PD

by any amount and only a 10% chance that CMRO2/
CMRglc is reduced by 10% or more.

Similar results, albeit with more measurement impreci-
sion as expected for regional data, were found in the
substantia nigra, putamen and globus pallidus (Tables 1
and 2). Analysis of regional/hemispheric ratios for puta-
men and globus pallidus showed no difference between
controls and participants with PD indicating that the
increases in regional metabolism were primarily a reflec-
tion of overall brain changes.

Previous PET studies of cerebral metabolism in PD

Previous PET studies of cerebral metabolism in PD have
yielded mixed results. In five studies of global CMRglc,
four have reported reductions of approximately 20% and
one reported no significant difference compared to age-
matched controls (Kuhl et al. 1984; Leenders et al. 1985;
Eidelberg et al. 1993, 1994; Piert et al. 1996). In one of
these studies, reductions in global CMRglc were seen only
after L-dopa was administered suggesting that the reduction
in metabolism may be at least in part due to medication
effects (Berding et al. 2001). Berding et al. (2001) have
suggested that hypometabolism parallels disease duration.

Number CMRO2 CMRglc CMRO2/CMRglc

Bihemispheric

Normal controls 12 115±25 20.7±2.6 5.6±1.3

Parkinson Disease 12 143±36 23.8±4.4 6.15±1.6

t-test p=.037a p=.056 p=.39

Substantia nigra

Normal controls 10 110±71 15.9±2.3 6.78±3.91

Parkinson Disease 10 147±91 17.9±3.2 8.36±4.91

t-test p=.313 p=.122 p=.437

Table 1 Bilateral cerebral and
substantia nigra metabolism in
early Parkinson Disease (from
Powers et al. 2008)

CMRO2—cerebral metabolic
rate of oxygen (micromoles
100 g−1 min−1 ), CMRglc—ce-
rebral metabolic rate of glucose
(micromoles 100 g−1 min−1 ),
Values are mean ± SD
a Primary analysis

Table 2 Bilateral basal ganglia metabolism in early Parkinson Disease (from Powers et al. 2008)

Number CMRO2 Regional/Hemispheric CMRO2 ratio CMRglc Regional/Hemispheric CMRglc ratio

Putamen

Normal controls 12 138±27 1.21±0.06 24.2±4.1 1.17±0.13

Parkinson Disease 12 175±40 1.23±0.19 29.8±5.0 1.26±0.11

t-test p=.016 p=.86 p=.007 p=.08

Globus pallidus

Normal controls 12 110±39 0.95±0.19 16.8±2.8 0.81±0.07

Parkinson Disease 12 137±37 0.98±0.23 20.6±2.8 0.88±0.12

t-test p=.097 p=.702 p=.003 p=.093

CMRO2—cerebral metabolic rate of oxygen (micromoles 100 g−1 min−1 ), CMRglc—cerebral metabolic rate of glucose (micromoles
100 g−1 min−1 ), Values are mean ± SD
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Thus, these reported changes in CMRglc likely reflect a
consequence of the PD disease process. We deliberately
chose to study patients with very early disease to try to
determine if there was metabolic dysfunction that caused
PD. The mean disease duration of 22 months in our study
was substantially shorter than in these previous studies
where it ranged from 4 to 15 years. Our analysis using
absolute and relative measurements showing a trend toward
increased global CMRglc in very early PD supports the
theory that the reported reductions in metabolism are a
consequence, not a cause, of the disease.

Regional basal ganglia metabolism in PD measured with
PET has been reported to be increased, decreased or
unchanged (Kuhl et al. 1984; Rougemont et al. 1984;
Martin et al. 1984; Wolfson et al. 1985; Leenders et al.
1985; Mohr et al. 1992; Eidelberg et al. 1993, 1994, 1995;
Piert et al. 1996). In these studies, findings are dependent
on whether analysis is performed using absolute values,
relative values or more sophisticated image analysis
techniques such as statistical parametric mapping or scaled
subprofile modeling (Eidelberg et al. 1993, 1995; Piert et
al. 1996). The validity of analysis methods that use
normalization based on whole brain values for assessing
relative basal ganglia metabolism has recently been
challenged (Borghammer et al. 2009). We found no
evidence for relative increases or decreases in basal ganglia
CMRO2 or CMRglc in early PD using either absolute
values or normalization based on whole brain values.

Increased cerebral oxidative metabolism in early PD

The pathophysiological basis for the increase in cerebral
oxidative metabolism in early PD is not known. Based on
the classic study by Wooten and Collins (1981) who
described transient glucose hypermetabolism focally re-
stricted to ipsilateral globus pallidus following unilateral 6-
hydroxydopamine lesions of the substantia nigra in rats,
increased metabolism in basal ganglia structures has been
ascribed to loss of dopaminergic inhibitory pathways
(Martin et al. 1984; Wolfson et al. 1985; Eidelberg et al.
1993). A generalized loss of inhibitory dopaminergic input
throughout the brain is a possible cause for the general
increase in metabolism. Alternatively, this general increase in
CMRO2 could be due not to increased metabolic demand,
but to an uncoupling of ATP production from oxidation in
the terminal stage of oxidative phosphorylation. Uncoupling
(dysfunction of Complex V ATP synthase) produces an
increase in both CMRO2 and CMRglc similar to what we
observed (Patel and Brewer 2003; Tretter and Adam-Vizi
2007). Whether uncoupling of oxidative phosphorylation
occurs in early PD and whether or not it is important in the
pathogenesis of PD will require further study.

Summary and conclusions

In summary, we found a generalized increase in cerebral
oxygen metabolism in never-medicated patients with early
PD. Since PD symptoms were already manifest, we can
exclude reduced oxidative activity of the mitochondrial ETS
as a pathogenic mechanism of their disease. Thus, while
defects in mitochondrial ETS may be present in some
patients with PD, the absence of defects in cerebral oxidative
metabolism in these12 patients with early PD indicates that
dysfunction of ETS-mediated oxidation cannot be essential
to the pathogenesis of neuronal death in early PD.
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